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ABSTRACT- Incompressible high-Reynolds-number flows are simulated by solving the
Navier-Stokes equations. A finite-difference method with third-order upwinding are em-
ployed without using any turbulence model. Multi-directional formulation is applied for
improved accuracy. Validity of this method is discussed. Examples are presented to show
the applicability of the present approach to variety of problems.
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1. INTRODUCTION

Many of high-Reynolds-number, turbulence simula-
tions have been based on Reynolds-averaged Navier-
Stokes equations using a turbulence model. Some
use a large-eddy simulation based on a Smagorinsky-
type model (Deardorff, 1970). However, a usual tur-
bulence model or a large-eddy simulation is not suit-
able for high-Reynolds-number-flow computation be-
cause, there, the effect of turbulence mixing is usu-
ally replaced by second-order diffusion. This diffu-
sion is similar to viscous diffusion. It means that we
are simply computing a locally low-Reynolds-number
flow.

There are some real direct numerical simulation in
which most of the small-scale structure are resolved,
but the computations can be done only at relatively
small Reynolds numbers. We can not use enough
grid points for high-Reynolds-number flows of prac-
tical interest. We have rather to use a very coarse
grid system. In many applications, large structures
are most important. What we want to do is to cap-
ture the large-scale structure using a coarse grid sys-
tem.

On the other hand, quit a few simulations (see
Kuwahara, 1999), show that large structures of high-
Reynolds-number, turbulent flow can be captured us-
ing relatively coarse grid, if the numerical instability,
usually unavoidable for high-Reynolds-number-flow
simulation, is suppressed. Most successful simula-
tions in these approaches are based on the third-
order upwind formulation (Kawamura and Kuwa-
hara, 1984). An approach similar in philosophy but
different in method is adopted by Boris et. al. (1992).

In the present paper, we summarize the third-
order upwind scheme for high-Reynolds-number-flow

computations. To increase the accuracy, we have de-
veloped multi-directional finite-difference method.

2. COMPUTATIONAL METHOD

The governing equations are the incompressible
Navier-Stokes equations. In three-dimensional
Cartesian coordinates system, they are as follows:

Ou;

6mj

Ou; Ou; _ Op 0 1 (Ou; = Ou;
ot +u18mj - Oy * Oz; {Re <8mj * 8@“@)}
(2)
For high-Reynolds-number flows, time-dependent
computations are required owing to the strong un-
steadiness. A finite-difference method is employed
to solve the basic equations computationally. These
equations are solved by using projection method
(Chorin, 1968, and Takami and Kuwahara, 1974).
This method can be written in the following form

when it is applied to the above equations:
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w + gradp = F, (3)
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8ui
R ] 5
w; o’ ( )

Ou; 0 1 (Ou; Ou;
Fi = — U= v J— J— L J , 6
uJawj+8wj{Re <8mj+8wi>} (©)
The Helmholtz’s decomposition works.

w"” = F — Gradp”, (7)
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where the index v denotes the vth iterations and e
is a relaxation constant. Symbols Grad and Div are
suitable difference approximations to the operators
grad and div. The last term with 1/At in eq.(8) is
the correction term for preventing the accumulation
of the error in w. If p and € are regarded as the tem-
perature and time increment, eq.(8) is considered to
be the heat equation discretized by the Euler explicit
method. For its stability, the value of £ is obtained.
Equation (8) becomes Poisson equation for the pres-
sure

Div(Gradp) = DivF + AitDivu (9)

after the convergence when p**! is equal to p”. Al-
though this method is essentially the same as the
MAC method, the effect of the compressibility due

to the temperature difference is correctly evaluated
in this formulation.

All the spatial derivative terms are represented
by the central difference approximation except for
the convection terms. For the convection terms, the
third-order upwind difference is used to stabilize the
computation. This is the most important point for
high-Reynolds-number computations and the detail
is given below.

Strong numerical instability caused by the aliasing
error occurs at high Reynolds numbers, owing to the
non-linear convection terms, if enough grid points are
not used to resolve the small-scale structures. When
digitizing a continuous function into a finite number
of the values, it is very important to filter out the
high-frequency part of the original function which
can not be resolved by the digital system. If not,
aliasing error makes the approximation meaningless.

Usually a turbulence model or a large eddy sim-
ulation is used to get rid of this instability. The
diffusion coefficients increased by the added turbu-
lent viscosity reduce the aliasing error and suppress
the numerical instability. In most of the models, this
diffusion has the same form as the viscous diffusion
and the diffusion coefficient is usually much larger
than that of the viscous diffusion. Therefore, the ef-
fect of physical diffusion is concealed, resulting no
dependency of the flow on the Reynolds number is
captured.

Another way to stabilize the computation is to use
an upwind scheme. The first-order upwind scheme
is widely used because of the very good stability but
the leading numerical error caused by this upwinding
is second order and similar to the physical diffusion.
This should be avoided because of the same reason
just mentioned above.

The second-order upwind scheme has a dispersion
type leading error, which makes the computation un-
stable generally.

For the discretization of the non-linear convection
terms, it has special importance for stable computa-
tion whether the order of accuracy is odd or even. In
case of even order of accuracy, the leading numerical-
error term is the odd-order derivative which is dis-
persive. Once some error is created, the error never
diffuses but moves around in the computational do-
main until the computation blows up. Eventually
no stable solution can be obtained in this case. On
the other hand, in case of odd order of accuracy, the
leading error term is the even-order derivative which
is diffusive. This makes the computation very stable
by reducing the aliasing error well.

A third-order upwind scheme has been found to be
most suitable for high-Reynolds-number-flow com-
putation. The leading numerical error terms are
the fourth-order derivative terms, where the effects
of the second-order numerical diffusions are care-
fully removed. The numerical diffusion of forth-order
derivatives is of short range and does not conceal the
effect of molecular diffusion but well stabilizes the
computation.

One simple explanation why the fourth-order dif-
fusion does not conceal the effect of second-order dif-
fusion is as follows. A finite-difference representation
of the fourth-order diffusion term is as follows:
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This can be written as,
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The two terms in eq.(11) represent the second-order
diffusion and their effects are canceled each other
except near the point k. This means fourth-order
diffusion is very independent from second-order dif-
fusion. In general, the effects of lower-order diffusion
are not concealed by higher-order diffusion.

Similarly, fifth-order upwinding is possible and
some computations have been done but it requires
seven points in each direction to approximate the lo-
cal derivative. This means to require a wider range
of analyticity to the solution of the equations. High-
Reynolds-number flows are not so analytical, there-
fore it is not necessarily better than third-order un-
winding.

There are several third-order upwind schemes. We
use the following scheme. Initially, the one-sided
second-order finite difference approximation is em-
ployed for the convection terms.
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We can rewrite the above equations to a symmetrical



form by using the formula:
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Then, eq.(12) can be written
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Finally, we get
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If the first and second terms of eq.(13) are developed
into Taylor series, they become respectively,
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Therefore, the leading error of eq.(13) is order (Az)?
and its coefficient includes third-order derivative. As
mentioned above, odd order-derivative is not desir-
able, but this error term is eliminated if the first term
of eq.(13) is replaced by

g - (—ugro + 8(ups1 — up—1) + ug—2)/12Az. (15)

As a result, the present third-order upwind scheme
is represented by five grid points as follows:
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This scheme is called Kawamura-Kuwahara scheme
(1984). There is another version of third order up-
wind schemes for example as follows:
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where « is chosen suitably. We compared
Kawamura-Kuwahara scheme, UTOPIA and
QUICK schemes (Leonard, 1979) by the energy
spectrum in one-dimensional Burgers turbulence
and found the above Kawamura-Kuwahara scheme
is the best (fig.1). When we use a very fine grid

as 4096 points, the three schemes agree completely
with each other and theoretical prediction. How-
ever, with reducing the number of grid points, the
difference become clear. Only the present method
give the good agreement with the result of very fine
computations.
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Fig.1 Energy spectrum for Burgers turbulence.

There is another important problem in high-order
upwind schemes. That is, the accuracy decreases
when the flow direction is not well parallel to one of
the coordinate lines. If we use generalized coordinate
system, near the boundary, the flow direction and
one of the coordinate lines are almost parallel, and
this problem is not serious. However, in general, flow
direction is not always parallel to a coordinate line
and the problem become very important.

To overcome this problem we introduced the multi-
directional upwind method. This method is summa-
rized as follows:



In case of 2-dimensional computation, when struc-
tured grid points are given, the black points in
fig.2(a) are usually used to approximate the deriva-
tives at the central point (system A). If we introduce
the other 45 degrees-rotated local grid points, the
white ones in fig.2(b), which can be used to approxi-
mate the derivatives at the central point (system B).
In order to improve the derivative value at the cen-
tral point, we mix the derivative values calculated
from both systems (A and B) at a proper ratio. We
adopt the ratio A : B = 2/3 : 1/3. Using this ra-
tio, for example, resulting finite-difference scheme for
the Laplacian coincides with the well-known 9-points
formula with forth-order accuracy. This method im-
proves the rotational invariance of the coordinate
system. Then those flows where flow direction is not
parallel to the grid direction are better simulated.
In case of 3-dimensional computation, we intro-
duce three different grid systems. Each grid sys-
tem is obtained by rotating ordinary one (system A)
around one axis. For example, one of those systems,
system B (z'-y'-z) is shown in fig.2. In the same way
as 2-dimensional computation, white circle points are
used instead of black ones on the z-y plane, and ordi-
nary ones in the z direction. Other grid systems are
also introduced similarly. Thus we can obtain three
different values at the same point, and they are av-
eraged, since any physical phenomena are equivalent
in each grid system. The rotational invariance of the
coordinate system can be improved by means of this
method.
:||_r

E

(a) system A

(b) system B

o | T X

(c) system B: z'-y'-z
Fig.2 Grid for multi-directional scheme

For all the spatial derivatives, the multi-directional
finite-difference method is used. This method has an-

other advantage. In MAC method, usually staggered
mesh is used to remove the unphysical oscillation of
the pressure. This oscillations is caused by the de-
coupling of the computed values within the nearest
two points. These values couples more tightly with
the second nearest points. This decoupling become
less if we use third-order upwind scheme because of
the five-point differencing, but there remains some.
However, if we use multi-directional finite-difference
method, every point becomes tightly coupled and the
oscillation disappears. Therefore, a non-staggered
mesh system is employed where the defined positions
of velocity and pressure are coincident.

For the temporal integration of the Navier-Stokes
equations, the Crank-Nicolson implicit scheme is uti-
lized. This scheme has second-order accuracy in
time. These equations and the Poisson equation are
iteratively solved at each time step by the succes-
sive over relaxation (SOR) coupled with a multi-grid
method.

3. COMPUTATIONAL RESULTS

3.1. CIRCULAR CYLINDER

The dependence of the drag coefficients on Reynolds
numbers is shown in fig.3. The number of grid points
are 32*16, 64*32, 128*64. If the Reynolds number
is less than 100, all the computations and experi-
ments agree very well. At high Reynolds numbers
even 64*32 computation can capture the drag crisis
qualitatively. The 128*64 computations agrees much
better with the experiments as expected.

The drag sharply decreases at about Reynolds
number 400000, which is called drag crisis, is well
captured even using this coarse grid. Instantaneous
and time-averaged flow patterns clearly show the dif-
ference as shown in fig.4. After drag crisis, flow sepa-
ration delays and the wake becomes narrower, which
makes the drag less.
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Fig.3 Drag coefficients of circular cylinder
(Kuwahara, 1999)



(a) Re=50000, before drag crisis

(b) Re=1000000, after drag crisis

Fig.4 Flow past a circular cylinder, streamlines and pressure contours, background color shading shows,
the vorticity distribution. Instantaneous flow field, 128*256 grid system.

3.2. REARRANGEMENT
OF KARMAN VORTEX STREET

Two-dimensional flows past a bluff body usually ac-
company a Karman Vortex street. It rearranges itself
and makes another Karman Vortex street of differ-
ent wave length. However, this phenomenon occurs
far beyond the body. Therefore, to simulate this,
we must include a long wake region in the computa-
tional domain. We need about 1000 times length of
the body size.

However, in even two-dimensional computation, we
can use several thousands grid points in one direc-
tion. This means the body should be represented
by several grid points. This becomes possible by
using the present multi-directional finite-difference
method. Figure 5 shows the Karman Vortex street
and its rearrangement. The body is represented by
only three grid points. Total number of the grid
points is 2059*257. The upper part of figure is the
velocity component perpendicular to the flow direc-
tion.

Fig.5 Rearrangement of karman vortex street. 2058*256 Cartesian grid system.

3.3. FLOW AROUND AN AIRFOIL

Flow around an airfoil is a standard problem, but
unsteady computations have rarely been done. At
high angle of attack, the flow becomes very unsteady
and to understand the flow well we need an unsteady
simulation. For airfoil simulation, C-grid is usually
used to avoid the trailing edge singularity. To make
C-grid is not easy for very high angle of attack, and
this is another reason of the difficulty to simulate

the flow at very high angle of attack. Also C-grid
needs unnecessarily concentrated grid points in the
near wake region beginning from the trailing edge.
This make the computation more unstable. On the
other hand O-grid is, in every sense, much better
if the computation converges. The multi-directional
finite-difference method makes the computation very
stable even near the singular points. Computed lift
coefficients agree well with experiments.
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Fig.6 Flow around NACAOQ0012 airfoil at
Re=1000000, 128*64*16 O-grid system,
instantaneous streamlines, pressure contours,
pressure shading on the airfoil.
(Kuwahara and Komurasaki, 2001)
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Fig.7 Computed force coefficients around
NACAO0012 airfoil.

Figure 7(a) shows the drag, lift and moment coeffi-
cients cd, cl, cm in 2D and 3D computations. In case
of 2D computation, cl agrees perfectly well with the
experimental values up to the stall angle. The lift
coefficients cl become much larger than the experi-
mental values beyond the stall angle. On the other
hand, in case of 3D computation, before the stall at
the attack angle 15 degrees, the lift does not change
much but after the stall at attack angle 18 degrees,
3D computation quickly develops, and the lift de-
creases accordingly. The final results agree with the
experimental ones very well (Abbott and Von Doen-
hoff, 1959). Figure 7(b) shows drag, history of lift
and moment coefficients from 2D to 3D computa-
tion at the stall angle of 18 degrees. The left side of
graph shows the result of 2D computation and the
other side, 3D computation with using the result of
2D computation as the starting condition.

3.4. TRANSITION IN BLUFF BODY WAKE

It is impossible to compute transitional flow by us-
ing a turbulence model. Even large-eddy simula-
tion can not handle this type of problem, because
it assumes the flow is turbulent from the beginning.
However, transition phenomena is very important
at high-Reynolds number flow. In the present ap-
proach, this is not a special thing, we can compute
any transitional flow without any special considera-
tion. Figure 8 shows a flow around a protoceratopus.
This is as bluff as a sphere, then the wake turbulence
is very similar to the sphere. In figs.9 and 10, devel-
opment of turbulence behind a sphere is shown; the
sphere has impulsively started from rest. The visual-
ization was done by showing the surface pressure of
the body and the volume rendering of absolute value
of the vorticity.

The number of the grid point s
288*144*%144=5,971,968 in the case of sphere
and 256*128%128=4,194,304 in the case of protocer-
atopus. These numbers are not enough to see the
smallest structures but look to be good enough to
see the large structure in the transitional stage.

Fig.8 Flow around a protoceratopus at
Re=100000, 256*128*128 grid system.



Fig.9 Development of turbulence behind a sphere Fig.10 Development of turbulence behind a sphere
at Re=20000, 288*144*144 grid system at Re=2000, 256*128*128 grid system



Fig.11 Flow past a car, 256*¥128*96 grid system.
Stream lines and pressure contour lines.

3.5. SIMULATION USING A GENERALIZED
COORDINATES SYSTEM MODIFIED FROM
CARTESIAN COORDINATES (GCMCCQC)

The computation carried out by using a body-fitted
coordinates for saving grid points and capturing flow
mechanism exactly. The generalized coordinates sys-
tem in this computation is generated by modifying
Cartesian coordinates, because it is easier to gener-
ate grids and to apply to other flow problems widely.
As examples, flows around one or some bluff bodies
are computed in two-dimensional domain.

Figure 12(a) shows body-fitted grid which is used
for computation of a flow around a circular cylinder.
On the other hand, in fig.12(b), the original grid of
body-fitted one in Cartesian coordinates is displayed
for the same computation. In both figures, circular
shadow indicates a cylinder and the number of grid
points is 49%25.

(a) Body-fitted coordinates.

(b) Cartesian coordinates.
Fig.12 Computational grid.

In fig.13, (a) and (b) show results of 2-d computa-
tions of flow past a circular cylinder at Reynolds
number = 10* by using GCMCC (fig.12(a)) and
Cartesian coordinates (fig.12(b)) respectively. In this
figure, equi-pressure contour lines and particles from
the surface of cylinder are expressed.
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(b) Cartesian coordinates.
Fig.13 Pressure field and particles.



Figures 14 and 15 are other examples of 2-d and 3-d
computations by using GCMCC grid. These results
show that flow mechanisms are well captured with
GCMCC even using coarse grid.
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Fig.14 2-d flow past bluff bodies
by using GCMCC grid.

" (b) Top view of computational grid (96*48*48).

(c) Flow pattern. Stream lines, pressure contour
lines and pressure volume rendering.
Fig.15 3-d flow past bluff bodies
by using GCMCC grid.

4. CONCLUSION

Flows past various bodies are simulated by using
Cartesian coordinates system, body-fitted coordi-
nates and GCMCC (a generalized coordinates sys-
tem modified from Cartesian coordinates).

It is becoming clear that we need not resolve the
small-scale structure of high-Reynolds-number flow
to capture the large structure, which is most impor-
tant for application. We should not use standard
models to simulate any high-Reynolds-number, tur-
bulent flows. Only without using turbulence models
we are able to capture the dependence of the flow
on the Reynolds number. To avoid the numerical
instability we can simply use a third-order upwind
difference. Multi-directional finite-difference makes
the dependence of the solution on the flow direction
less and the computation more reliable.
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